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Abstract

A combined finite element method (FEM) and method of moments
(MoM) technique is presented to analyze the radiation characteristics
of a cavity-fed aperture in three dimensions. Generalized feed model-
ing has been done using the modal expansion of fields in the feed struc-
ture. Numerical results for some feeding structures such as a
rectangular waveguide, circular waveguide, and coaxial line are pre-
sented. The method also uses the geometrical theory of diffraction
(GTD) to predict the effect of a finite ground plane on radiation char-
acteristics. Input admittance calculations for open radiating structures
such as a rectangular waveguide, a circular waveguide, and a coaxial
line are presented. Numerical data for a coaxial-fed cavity with finite
ground plane are verified with experimental data.

1. Introduction

Cavity-backed aperture antennas are very popular in aerospace applications because of their confor-
mal nature. The cavities can also have various types of microstrip antennas residing in them. Hybrid
techniques have recently become attractive for the numerical analysis of these types of problems. The
combined finite element method and method of moments (FEM and MoM) techniques, in particular,
have been used to analyze various cavity-backed antenna systems (ref. 1).

The FEM has a relatively simple formulation and is attractive for complex penetrable structures.
Also, it results in sparse, banded matrices that can be effectively stored and solved. However, the FEM
when used alone does not incorporate the Sommerfield radiation condition and hence requires discreti-
zation to extend far from the source region so that the radiation condition can be imposed. Recent
efforts have concentrated on the use of absorbing boundary conditions to reduce the discretization
region (ref. 2). Unfortunately, the accuracy of these approximate boundary conditions depends on spe-
cific problem geometry, leading to results of unpredictable accuracy.

The method of moments (MoM), on the other hand, incorporates the Sommerfield radiation condi-
tion through the use of the appropriate Green’s function. As a result, the domain discretization can be
kept to a minimum. However, this method has the disadvantage of being difficult to implement for com-
plex penetrable structures. This method also results in full matrices whose treatment requires excessive
storage, limiting its application to small-scale devices.

To eliminate the disadvantages of both methods, several authors have proposed a combined
approach (refs. 3 and 4) for radiation and scattering problems. For a comprehensive list of references on
hybrid FEM/MoM techniques, see reference 5, chapter 9.

The modeling of the coaxial feed in reference 1 is accomplished by replacing the feed probe by a
constant filament of current with a delta-gap generator. The feed modeling in reference 1 is expected to
give good results for shallow cavities, but deep cavities require rigorous feed modeling. In this paper a
combined FEM/MoM approach is used to predict characteristics of cavity-backed antennas (fig. 1).
Various feed lines such as a rectangular waveguide, a circular waveguide, and a coaxial line are consid-
ered. Using the modal expansions of fields in the feed, the input admittance of cavity-backed antennas is
calculated accurately.

In most antenna-pattern measurements, the infinite ground plane is simulated by a relatively large
finite ground plane. Although this simulation does not appreciably affect the input admittance measure-
ments, diffractions from the edges of the ground plane modify the radiation pattern considerably. In the
past, the geometrical theory of diffraction (GTD) was successfully applied to predict the changes in the
radiation pattern of the aperture antennas caused by a finite ground plane (ref. 6). The technique
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described in reference 6 predicts the changes in the radiation patterns of cavity-backed aperture anten-
nas with finite ground planes.

The body of this paper is organized in the following manner. Section 2 presents the theory for cav-
ity-backed apertures in infinite ground planes. Section 3 compares the numerical results calculated
using the present analysis with the available results in the literature. The input admittance calculations
for an open rectangular waveguide, a circular waveguide, and a coaxial line are presented and compared
with the results available in the literature. To verify the validity of the GTD technique used in combina-
tion with the FEM/MoM technique, the radiation patterns of a coaxial cavity with finite ground plane
are calculated and compared with experimental results measured at the Langley Low-Frequency
Antenna Test Facility. Numerical data for input return loss of such a coaxial cavity are also computed
and compared with experimental data. Section 4 presents concluding remarks. For completeness, an
appendix includes expressions for modal expansions of electric fields of input-feed-line structures.

Symbols

A FEM/MoM matrix

Apq, Bpq amplitude of modal vectors in feed

a, b length and width of rectangular waveguide, respectively

am reflection coefficients for TEM/TE modes

b excitation matrix

bm reflection coefficients for TM modes

Ds, Dh diffraction coefficients

ds surface integral

dv volume integral

E time-harmonic electric field

Einc incident electric field

Einp electric field coming from transmission line input

e unknown coefficient matrix

ei unknown coefficients as defined in equation (8)

einc modal vector function for incident electric field in feed structure

TEM/TE modes in feed line

TM modes in feed line

F electric vector potential

H time-harmonic magnetic field

Hap magnetic field at aperture

Hd total diffracted magnetic field

diffracted magnetic field from pointA

diffracted magnetic field from pointB

diffracted magnetic field from pointC

em
TE

em
TM

H A
d

HB
d

HC
d
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diffracted magnetic field from pointD

Hff far field of magnetic field

total magnetic far field after adding diffracted field

H inp magnetic field at input surface

Hθff magnetic far field,θ-component

Hφff magnetic far field,φ-component

diffracted magnetic field from pointA, θ-component

diffracted magnetic field from pointA, φ-component

diffracted magnetic field from pointB, θ-component

diffracted magnetic field from pointB, φ-component

J1 ( ) Bessel function of first kind (first order)

Jn ( ) Bessel function of first kind (nth order)

( ) derivative ofJn ( ) with respect to its argument

j =

ko free-space wave number,

kρ cutoff wave number for TM modes in circular waveguide

cutoff wave number for TE modes in circular waveguide

L distance between radiating aperture (inz = 0 plane) and feed-line input surface
(in z = −L plane)

Li length of edge of tetrahedral element

M magnetic current

n wedge factor

unit normal

p, q mode indices for feed

r position vector from origin to field point

position vector from origin to source point

rc radius of circular waveguide

r1, r2 inner and outer radius of coaxial line, respectively

r, θ, φ spherical coordinates

S surface area

Sap surface area of aperture (fig. 1)

Sinp surface area of input plane (fig. 1)

T vector testing function for volume elements

Ts vector testing function for surface elements

HD
d

H ff
t

Hθ A,
d

Hφ A,
d

Hθ B,
d

Hφ B,
d

J′n
1–

2π
λ

------

k′ρ

n̂

r ′
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TE transverse electric

TE10 dominant mode in rectangular waveguide

TE11 dominant mode in circular waveguide

TEM transverse electric and magnetic

TM transverse magnetic

V volume

W i vector basis functions for tetrahedral elements,i = 1, 2, ..., 6

W j vector basis functions for tetrahedral elements,j = 1, 2, ..., 6

W1, W2 length and width of finite ground plane, respectively (fig. 1)

X, Y, Z rectangular coordinate axes (fig. 1)

x, y, z unit vector alongX-, Y-, andZ-axis, respectively (fig. 1)

Yin input admittance of feed line

Yo characteristic admittance of feed transmission line

αm, αn simplex coordinates associated with nodesm andn in tetrahedral element

angle between edge of diffraction and ray of incidence on edge

Γ reflection coefficient as defined in equation (27)

γinc propagation constant of incident field in feed

γm propagation constant of feed line

εop, εoq Neumann’s number

εr relative permittivity

ηo intrinsic impedance of free space

unit vector alongθ-direction

λ free-space wavelength

µo free-space permeability

µr relative permeability

ξ1 angle between ground plane and diffracted ray from pointA

ξ2 angle between ground plane and diffracted ray from pointB

ρcA distance between center of aperture and diffraction pointA

ρcB distance between center of aperture and diffraction pointB

ρcC distance between center of aperture and diffraction pointC

ρcD distance between center of aperture and diffraction pointD

ρ, φ, z cylindrical coordinates

unit vector alongρ-, φ-, andz-direction, respectively

unit vector alongφ-direction

pth zero(p = 1, 2, 3...) ofJn ( )

β′o

θ̂

ρ̂ φ̂ ẑ, ,

φ̂

χpq
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pth zero(p = 1, 2, 3...) of ( )

ψo angle between aperture (source) and point of diffraction

ω angular frequency

▲ integration over a tetrahedral element

∇ del operator

2. Theory

Figure 1 shows the geometry of the problem to be analyzed. For a linear, isotropic, and source-free
region the electric field satisfies the vector wave equation:

(1)

whereµr andεr are the relative permeability and relative permittivity of the medium in the cavity. The
current formulation can be easily modified to incorporate anisotropic materials by using proper tensor
quantities forµr andεr (ref. 7). The time variation exp (jωt) is assumed and suppressed throughout this
paper.

To facilitate the suitable solution of the partial differential equation in equation (1) with the FEM,
equation (1) is multiplied by a vector testing functionT, and the result is integrated over the volume of
the cavity. By applying suitable vector identities, we can write equation (1) in its weak form (ref. 8) as

(2)

Applying the divergence theorem to the integral on the right-hand side of equation (2) and using
Maxwell’s equation∇ × E = −jωµoµrH, whereµo is the permeability of free space andω is the angular
frequency, we can write equation (2) as

(3)

where  is the outward unit normal to the surface andH is the magnetic field at the surface. Because the
tangential electric field is zero on the perfect-electric-conducting (PEC) walls of the cavity, the surface
integral in equation (3) is nonzero only over the aperture opening in the infinite ground plane and the
input aperture. Hence, we can write equation (3) as

(4)

whereSap is the aperture surface andSinp is the input surface (see fig. 1),Hap is the magnetic field at the
aperture, andH inp is the magnetic field at the input surface.

At this point, the problem can be divided into three parts, the first part involving the discretization
and evaluation of volume integrals on the left-hand side of equation (4) and the second part involving

χ′pq

∇ 1
µr
-----∇ E× 

 × ko
2εrE– 0=

1
µr
----- ∇ T×( ) ∇ E×( )⋅ v ko

2εr T E⋅ vd∫∫
V

∫–d∫∫
V

∫ ∇ T
1
µr
-----∇ E×× 

 ⋅∫∫
V

∫= dv

1
µr
----- ∇ T×( ) ∇ E×( )⋅∫∫

V
∫ dv ko

2εr T E⋅ vd∫∫
V

∫– jωµo T n̂×( ) H⋅ sd∫
S
∫=

n̂

1
µr
----- ∇ T×( ) ∇ E×( )⋅ v ko

2εr T E⋅ v jωµo T n̂×( ) Hap⋅ sd
Sap

∫∫–d∫∫
V

∫–d∫∫
V

∫

jωµo T n̂×( ) H inp⋅ sd
Sinp

∫∫=
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the discretization and evaluation of the surface integral overSap. The third part involves the surface
integral over the input aperture. These three parts are given explicitly as

(5)

(6)

(7)

2.1. FEM Formulation

To discretize the volume integrals in equation (5), the volume of the cavity is subdivided into small-
volume tetrahedral elements. The electric field is expressed in terms of the edge vector basis functions
(ref. 5), which enforce the divergenceless condition of the electric field implicitly:

(8)

whereei are the unknown coefficients associated with each edge of the tetrahedral element and

(9)

wherem andn are the nodes connected to form edgei, Li is the length of theith edge, andαm andαn are
the simplex coordinates associated with nodesm andn (ref. 8).

The testing functionT is taken to be the same set of basis functions as that given in equation (8);
that is,

(10)

Substituting equations (8) and (10) into equation (5) and integrating over the volume of each ele-
ment yields

(11)

where▲ indicates the integration over the volume of a tetrahedral element andIev represents the inte-
gral Iv over a single element volume.

The evaluation of these integrals over a tetrahedral element is given in reference 9. These element
matrices are assembled over all the elements in the cavity volume to form a symmetric, sparse matrix of
FEM.

2.2. MoM Formulation

The discretization of cavity volume into tetrahedral elements automatically results in the discretiza-
tion of the aperture into triangular elements at thez = 0 plane. In accordance with the equivalence
principle (ref. 10), the fields in the two regions can be decoupled by closing the aperture with a perfect
electric conductor and introducing the equivalent magnetic current

(12)

I v
1
µr
----- ∇ T×( ) ∇ E×( )⋅ v ko

2εr T E⋅ vd∫∫
V

∫–d∫∫
V

∫=

I ap jωµo T n̂×( ) Hap⋅ sd
Sap

∫∫–=

I inp jωµo T n̂×( ) H inp⋅ sd
Sinp

∫∫=

E eiW i
i 1=

6

∑=

W i Li αm∇αn αn∇αm–( )=

T W j= j 1 2 … 6, , ,=( )

I ev
1
µr
----- ∇ W i×( ) ∇ W j×( )ei⋅ v ko

2εr W i W j⋅( )ei vd∫∫
▲
∫–d∫∫

▲
∫

i 1=

6

∑= j 1 2 … 6, , ,=( )

M E z×= z 0=( )
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over the extent of the aperture. Hence, from equation (8), the magnetic current over a triangular element
can be expressed in terms of the unknown coefficients associated with the tetrahedral elements as

(13)

Similarly the testing functions can be modified as

(14)

The magnetic field caused by the magnetic current given in equation (13) above the infinite ground
plane is given by

(15)

where the electric vector potentialF (making use of the image theory) is given by

(16)

wherer  is the field point and  is the source point.

Using the appropriate vector identities, we can rewrite the equation for the radiated magnetic field
in equation (15) as (ref. 10)

(17)

Substituting equation (17) into equation (6) and using standard surface vector calculus formulas
(ref. 11) yields

(18)

The integrals in the above equation are evaluated over all the triangles on the aperture surface fol-
lowing the procedure outlined in Rao et al. (ref. 11). When calculating the mutual term over the trian-
gles, a 13-point Gaussian quadrature formula developed for triangles (ref. 12) is used. Closed-form
expressions given by Wilton et al. (ref. 13) are used to evaluate the self term of these integrals. The
dense matrix thus formed is assembled over all the triangles and combined with the FEM matrix using a
global numbering system.

2.3. Input Integral

For any transmission line input, the electric field can be formulated as the sum of the incident and
reflected fields.

(19)

(20)

M ei W i z×( )
z 0=

i 1=

3

∑=

Ts T z× W j z×= = j 1 2 3, ,=( )

Hap
1

jωµo
------------- ∇ ∇ F××( )=

F
1

2π
------ M x′ y′,( )

exp jko r r ′––( )
r r ′–

----------------------------------------- x′d y′d
Sap

∫∫=

r ′

Hap
1

jωµo
------------- ko

2
F ∇ ∇ F⋅( )+[ ]=

I ap ko
2

Ts F⋅ s ∇ Ts⋅( ) ∇ F⋅( ) sd
Sap

∫∫+d
Sap

∫∫–=

Einp Einc amem
TE

x y,( ) bmem
TM

x y,( )+[ ]exp γmz( )
m
∑+=

Einc eincexp γ incz–( )=



8

whereEinc is the incident electric field with unit amplitude,  and  represent the TEM/TE1 and
the TM mode, respectively,am andbm are the reflection coefficients for the TEM/TE and the TM mode,
respectively, andγm is the propagation constant. With the orthogonality properties of the waveguide
modes (ref. 10), the reflection coefficients are

(21)

(22)

The magnetic field at the waveguide input is given by

(23)

Substitutingam andbm in equation (23) and then using equation (23) in equation (7) and integrating
over the feed-line cross section atz = −L, we can write equation (7) as

(24)

2.4. FEM/MoM Matrix Equation

Combining all the integrals given in equations (5)–(7), we can write the system equation for this
problem as

(25)

1Because the analysis is assumed to be valid for a generalized feed line, both TEM and TE modes are represented. They need
only be used when applicable.

em
TE

em
TM

am exp γmz–( ) em
TE

E Einc–( )⋅ xd yd
Sinp

∫∫=

bm exp γm– z( ) em
TM

E Einc–( )⋅ xd yd
Sinp

∫∫=

H inp
1

jωµo
-------------–

1
µr
-----∇ Einp× 

 =

I inp 2γ incexp γ incL( ) T einc⋅ xd yd
Sinp

∫∫=

γm T em
TE⋅ xd yd

Sinp

∫∫ 
 
 

E em
TE⋅ xd yd

Sinp

∫∫ 
 
 

m
∑–

ko
2

γm
------ T em

TM⋅ xd yd
Sinp

∫∫ 
 
 

E em
TM⋅ xd yd

Sinp

∫∫ 
 
 

m
∑+

1
µr
-----

V
∫∫∫ ∇ T×( ) ∇ E×( )dv ko

2εr T E⋅ v jωµo T n̂×( ) Hap⋅ sd
Sap

∫∫–d
V
∫∫∫–⋅

γm T em
TE⋅ xd yd

Sinp

∫∫ 
 
 

E em
TE⋅ xd yd

Sinp

∫∫ 
 
 

m
∑+

ko
2

γm
------ T em

TM⋅ xd yd
Sinp

∫∫ 
 
 

E em
TM⋅ xd yd

Sinp

∫∫ 
 
 

m
∑–

2γ incexp γ incL( ) T einc⋅ xd yd
Sinp

∫∫=
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Substituting the expansion functions forE andT converts this equation into a set of linear equations
to solve for the unknownei given in equation (8). The linear equation system to be solved is written in
matrix form as

(26)

whereA is a partly sparse (from the FEM) and partly dense (from the MoM and the modal expansion
method) matrix,b is the excitation vector, ande is the unknown vector to be solved. The biconjugate
gradient algorithm is used with diagonal preconditioning (ref. 14) to solve equation (26) efficiently.
This algorithm also makes use of the symmetry of the matrix to store the matrix effectively.

2.5. Reflection Coefficient and Input Admittance

Solving equation (25) and using equations (21) and (22), we can obtain the reflection coefficients of
any waveguide mode:

(27)

The input admittance is then calculated as

(28)

whereYo is the characteristic admittance of the feed transmission line.

2.6. Far Field With Infinite Ground Plane

Once the electric field in the aperture is known, using equation (13) for the magnetic current, the
magnetic far field with infinite ground plane can be evaluated directly from the following equation:

(29)

2.7. Application of GTD for Finite Ground Planes

The infinite-ground-plane solution described in the preceding sections yields the field radiated in
the forward direction. This solution is obtained with equation (29). The effect of the finite ground plane
is incorporated by using the compact edge diffraction coefficients (ref. 15) and following the procedure
described in reference 6. The radiation fields are supplemented by the additional field contributions
arising from the diffraction by the edges of the finite ground plane. The diffracted field supplements the
field in the forward region, whereas it accounts totally for the field in the shadow region (behind the
finite ground plane) where the infinite-ground-plane solution gives a zero field.

The geometry of the finite rectangular ground plane is illustrated in figure 1. The midpoints on the
two edges of lengthW2 are given byA andB, respectively. The midpoints on the two edges of lengthW1
are given byC andD, respectively. The diffracted fields fromA andB are given by (ref. 6)

(30)

(31)

Ae b=

Γ am or Γ bm= =

Yin
1 Γ–
1 Γ+
-------------Yo=

H ff r θ φ, ,( )
r ∞→

jko

ηo
--------

exp jkor–( )
2πr

---------------------------- θ̂θ̂ φ̂φ̂+( )
Sap

∫∫–=

M x y,( )exp jko sin θ x cosφ y sin φ+( )[ ] xd yd⋅

Hθ A,
d 1

2
---Hθff d

π
2
--- 0, , 

 Ds ρcA ξ1 ψo β′o n, , , ,( )
ρcA

r r ρcA+( )
-------------------------

1 2⁄

exp jkor–( )exp jkodsinθ( )≈

Hθ B,
d 1

2
---Hθff d

π
2
--- π, , 

 Ds ρcB ξ2 ψo β′o n, , , ,( )
ρcB

r r ρcA+( )
-------------------------

1 2⁄

exp jkor–( )exp j– kodsinθ( )≈
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for φ polarization, and

(32)

(33)

for θ polarization. In the preceding equations,

(34)

and

(35)

(36)

where

ψo angle of incidence from aperture (source) toward the point of diffraction (A or B) = 0°

 for normal incidence (ref. 15, p. 811)

n wedge factor (ref. 15, figs. 13–30)

Similarly, the diffracted fields fromC andD are also calculated by replacingρcC = ρcD = d = W2/2.
The detailed expressions for diffraction coefficientsDs andDh are given by equation (113) of refer-
ence 15. Total diffracted field is given by

(37)

The diffracted fields for theφ = 180° andφ = 270° planes can also be calculated in a similar man-
ner. The total radiated far field is given by adding the diffracted field and magnetic far field given in
equation (29); that is,

(38)

The preceding analysis can be easily extended to a circular finite ground plane. If the circular
ground plane is symmetrically excited, the diffracted rays come to a focus in the forward and the rear
axial direction; that is, the axis of symmetry is a caustic of diffracted rays. The GTD field is not valid at
the caustic. However, GTD can be used indirectly to calculate the equivalent edge currents (around the
rim of the ground plane) that radiate in the caustic direction; these edge currents are integrated around
the circular rim to yield the field in the neighborhood of the caustic. The radiated field evaluation is the
same as that described in reference 6.

Hφ A,
d 1

2
---Hφff d

π
2
--- 0, , 

 Dh ρcA ξ1 ψo β′o n, , , ,( )
ρcA

r r ρcA+( )
-------------------------

1 2⁄

exp jkor–( )exp jkodsinθ( )≈

Hφ B,
d 1

2
---Hφff d

π
2
--- π, , 

 Dh ρcB ξ2 ψo β′o n, , , ,( )
ρcB

r r ρcA+( )
-------------------------

1 2⁄

exp jkor–( )exp j– kodsinθ( )≈

ρcA ρcB d
W1

2
--------= = =

ξ1
π
2
--- θ for 0 θ π≤ ≤+=

ξ2

π
2
--- θ for 0 θ π

2
---≤ ≤–

5π
2

------ θ for
π
2
--- θ< π≤–






=

β′o
π
2
---

H
d

H A
d

HB
d

for φ+ 0° plane=

HC
d

HD
d

for φ+ 90° plane=






=

H ff
t

H ff H
d

+=
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3. Numerical and Experimental Results

To validate the present analysis, various numerical examples are considered. As a simple case,
open-ended waveguide structures excited by a dominant mode field and radiating into half space
through an infinite ground plane are analyzed. To study the effect of a finite ground plane, this paper
considers a coaxially fed cavity that excites a coaxial aperture in a finite ground plane. The numerical
data for these cases are compared with earlier published results and the experimental data obtained at
NASA Langley Research Center.

3.1. Apertures in Infinite Ground Plane

3.1.1. Rectangular aperture.A rectangular aperture as shown in figure 2(a) with dimensions
a = 4.755 cm,b = 2.215 cm, andL = 1.9 cm in an infinite ground plane and excited by a rectangular
waveguide loaded with a dielectric plug (εr = 3.76) is considered. The dielectric plug is discretized
using 1230 tetrahedral elements. The air-dielectric interface inside the waveguide is considered as the
input plane. The dominant TE10 mode is considered to be incident at the planez = −L. The input admit-
tance of this structure is calculated as a function of frequency and plotted in figure 2(b). The numerical
results agree very well with the data presented by Swift (ref. 16).

3.1.2. Circular aperture.A circular aperture in an infinite ground plane and excited by a circular
waveguide is considered as a second example. The geometry is shown in figure 3(a). The circular
waveguide of lengthL = λ from the aperture is considered as a circular cavity for FEM discretization.
The waveguide is discretized at a level of 0.1λ. The dominant TE11 mode is considered to be incident at
the planez = −L. The input admittance is computed as a function of the radius of the waveguide and
plotted in figure 3(b) along with the numerical data given by Bailey and Swift (ref. 17). The results
computed using the present technique and those of reference 17 agree very well.

3.1.3. Coaxial aperture.As a third example, a coaxial aperture excited by a coaxial line is consid-
ered. The geometry is shown in figure 4(a). Again the coaxial line of lengthL = λ from the aperture is
considered as a coaxial cavity for FEM discretization. The coaxial line is discretized at a level of 0.1λ.
Only the dominant TEM mode is considered for both incident and reflected fields in the coaxial feed
line because the higher order modes do not seem to contribute to the final result. (See appendix
section A.3.) The input admittance is computed as a function of frequency and plotted in figure 4(b).
The results are compared with the available data in the literature (ref. 18).

3.2. Apertures in Finite Ground Plane

To verify the validity of the current method when combined with GTD, a coaxial cavity with a finite
ground plane is considered. The geometry of the cavity is shown in figure 5. The cavity is fed by a co-
axial line with the center conductor extending up to the radiating aperture. The cavity volume is dis-
cretized using 4474 tetrahedral elements, resulting in 4904 unknowns. For experimental verification, the
cavity with dimensions as given in figure 5 was fabricated and its input-return loss and radiation pat-
terns as a function of frequency measured. Figure 6 presents the input-return loss computed using the
present method, assuming infinite ground plane, along with the experimental results. The finite ground
plane in this case does not affect the input-return loss properties.

The far-field patterns for the structure shown in figure 5 were calculated with equation (37) for two
frequencies, 5.0 GHz and 9.0 GHz. Figures 7 and 8 show the calculated values along with the experi-
mental data. The good agreement between the calculated results and the experimental data validates the
present analysis. Because the radiation pattern of an antenna depends upon the aperture field, it is useful
to know the tangential electric field at the aperture of the structure (shown in fig. 5). In figures 9 and 10
the tangential electric field at the aperture is plotted for 5.0 GHz and 9.0 GHz, respectively. As
expected, the aperture field deviates from the TEM field distribution as the frequency increases.
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4. Conclusions

A combined finite element method/method of moments/geometrical theory of diffraction (FEM/
MoM/GTD) technique was presented to analyze radiation from cavity-backed apertures with finite
ground planes. Various numerical examples were considered to demonstrate the flexibility and validity
of the method. The numerical data obtained using the present method and the data available in the liter-
ature agree very well. The successful application of the GTD was demonstrated by calculating the radi-
ation patterns of a coaxial cavity with finite ground plane and comparing the theoretical results with the
experimental data. By virtue of the FEM, this combined FEM/MoM/GTD technique is applicable to
arbitrarily shaped cavities filled with inhomogeneous and anisotropic materials. With proper modeling,
microstrip antenna arrays residing in cavities with finite ground planes can be also analyzed. This tech-
nique can also be easily extended to a finite circular ground plane.

NASA Langley Research Center
Hampton, VA 23681-0001
September 6, 1995
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Appendix

Modal Expansions of Feed Structures

For completeness, expressions for the modal expansions of electric fields (eq. (19)) at the input
plane of feed structures are given below, with the incident field given by equation (20).

A.1 Rectangular Waveguide

The cross section of the input plane of the rectangular waveguide is shown in figure A1. The inci-
dent electric field is assumed to be the dominant TE10 mode, which is given by

(A1)

The reflected electric fields for TE and TM modes are written with modem = (p, q) as (ref. 10)

(p andq = 0, 1, 2, ...; ifp = 0, q ≠ 0; if q = 0, p ≠ 0) (A2)

and

(p = 0, 1, 2, 3, ...;q = 0, 1, 2, 3, ...) (A3)

where

(A4)

and

einc y
2

ab
------cos

πx
a

------ 
 –=

γ inc j ko
2 π

a
--- 

 2
–=









em
TE

Apqx
qπ
b

------ 
  pπ

a
------- x

a
2
---+ 

  qπ
b

------ y
b
2
---+ 

 sincos=

Apqy
pπ
a

------- 
  pπ

a
------- x

a
2
---+ 

  qπ
b

------ y
b
2
---+ 

 cossin–

em
TM

xApq
pπ
a

------- 
  pπ

a
------- x

a
2
---+ 

  qπ
b

------ y
b
2
---+ 

 sincos=

yApq
qπ
b

------ 
  pπ

a
------- x

a
2
---+ 

  qπ
b

------ y
b
2
---+ 

 cossin+

z
Apq

γm
--------- pπ

a
------- 

 2 qπ
b

------ 
 2

+
pπ
a

------- x
a
2
---+ 

  qπ
b

------ y
b
2
---+ 

 cossin+

Apq

εopεoq

ab
----------------

1

pπ
a

------- 
 2 qπ

b
------ 

 2
+

---------------------------------------=

εop
2 for p 0≠( )
1 for p 0=( )




=

εoq
2 for q 0≠( )
1 for q 0=( )




=



14

(A5)

A.2 Circular Waveguide

The cross section of the input plane of the circular waveguide is shown in figure A2. The incident
electric field is assumed to be the dominant TE11 mode, which is given by

(A6)

and

(A7)

where  and  represents the first zero of the derivative of the Bessel functionJ1.

Equation (A9) definesA11 with p = 1 andq = 1. The reflected electric fields for TE and TM modes with
m = (p, q) are given by

(A8)

(A9)

where  and  is thepth zero (p = 1, 2, ...) of the derivative of the Bessel func-

tion Jq of the first kind of orderq (q = 0, 1, 2, ...).χpq is thepth zero (p = 1, 2, 3, ...) of the Bessel func-
tion Jq of the first kind of orderq (q = 0, 1, 2, ...), and
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(A12)

where  for TE modes andκ = kρ for TM modes.

A.3 Coaxial Line

The cross section of the input plane of the coaxial line is shown in figure A3. The incident electric
field is assumed to be the dominant TEM mode and is given by

(A13)

(A14)

In a practical feed-line arrangement, the coaxial line is relatively small in diameter and the ampli-
tudes of the higher order coaxial modes that are excited are small. A reasonable approximation is to
assume that only a reflected TEM mode exists in the coaxial line. Hence, in equation (19),
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Figure A1.  Cross section of rectangular waveguide.

Figure A2.  Cross section of circular waveguide.

Figure A3.  Cross section of coaxial line.
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Figure 1.  Geometry of cavity-backed aperture in finite ground plane.
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(a)  Rectangular waveguide with dielectric plug radiating into half space.

(b) Variation of normalized admittance with frequency for casea = 4.755 cm, b = 2.215 cm,
L = 1.9 cm, andεr = 3.76.

Figure 2.  Rectangular aperture in infinite ground plane.
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(a)  Circular waveguide with radiusr radiating into half space.

(b)  Input admittance as function of 2rc/λ for caseL = λ and εr = 1.0.

Figure 3.  Circular aperture in infinite ground plane.
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(a)  Coaxial line with inner radiusr1 and outer radiusr2 radiating into half space.

(b)  Input admittance as function ofkor1 for caser2/r1 = 1.57,L = λ, andεr = 1.0.

Figure 4.  Coaxial aperture excited by coaxial line.
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Figure 5.  Geometry of coaxial cavity with finite rectangular ground plane.W1 = 24 in.; W2 = 12 in.;
L = 3/8 in.; Outer radius of coaxial cavity = 1 in.; Inner radius of coaxial cavity = 0.0181 in.; cavity
fed by 50Ω coaxial line.

Figure 6.  Return loss of coaxial cavity (fig. 5) with frequency.
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(a)  Radiation pattern of coaxial cavity atφ = 0° andφ = 180°.

(b)  Radiation pattern of coaxial cavity atφ = 90° andφ = 270°.

Figure 7.  Far-field patterns at 5.0 GHz.
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(a)  Radiation pattern of coaxial cavity atφ = 0° andφ = 180°.

(b)  Radiation pattern of coaxial cavity atφ = 90° andφ = 270°.

Figure 8.  Far-field patterns at 9.0 GHz.
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Figure 9.  Vector plot of electric field at coaxial-cavity aperture at 5.0 GHz. Amplitudes have been
equalized for clarity of presentation.

Figure 10.  Vector plot of electric field at coaxial-cavity aperture at 9.0 GHz. Amplitudes have been
equalized for clarity of presentation.



Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION
OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

REPORT DOCUMENTATION PAGE

November 1995 Technical Paper

Analysis of Three-Dimensional-Cavity-Backed Aperture Antennas Using a
Combined Finite Element Method/Method of Moments/Geometrical Theory
of Diffraction Technique

WU 505-64-70-01

C. J. Reddy, M. D. Deshpande, C. R. Cockrell, and F. B. Beck

L-17482

NASA TP-3548

Reddy: NRC-NASA Resident Research Associate, Langley Research Center, Hampton, VA; Deshpande: ViGYAN,
Inc., Hampton, VA; Cockrell and Beck: Langley Research Center, Hampton, VA.

A combined finite element method (FEM) and method of moments (MoM) technique is presented to analyze the
radiation characteristics of a cavity-fed aperture in three dimensions. Generalized feed modeling has been done
using the modal expansion of fields in the feed structure. Numerical results for some feeding structures such as a
rectangular waveguide, circular waveguide, and coaxial line are presented. The method also uses the geometrical
theory of diffraction (GTD) to predict the effect of a finite ground plane on radiation characteristics. Input admit-
tance calculations for open radiating structures such as a rectangular waveguide, a circular waveguide, and a co-
axial line are presented. Numerical data for a coaxial-fed cavity with finite ground plane are verified with experi-
mental data.

Antennas; Cavity backed; Finite element method; Method of moments; Geometrical
theory of diffraction

26

A03

NASA Langley Research Center
Hampton, VA 23681-0001

National Aeronautics and Space Administration
Washington, DC 20546-0001

Unclassified–Unlimited
Subject Category 17
Availability: NASA CASI (301) 621-0390

Unclassified Unclassified Unclassified


